Cursor Agent 变得超强的完整指南

[!note] 本文介绍了如何通过设定规则、利用知识库、制定计划和调试策略等方法来提升 Cursor Agent 的性能,减少 AI 幻觉问题。


1- 如何让 Cursor Agent 变得超强?

1.1- 引言

Cursor Agent 展现出巨大的潜力,未来有望能够自主完成复杂的编码任务。然而,目前一个核心的挑战是 AI 模型可能产生的 " 幻觉 "——即生成不准确或错误的代码,从而扰乱代码库。

本指南旨在提供一套实用的方法,以显著减少 AI 幻觉问题(据称可减少 90%),并充分发挥 Cursor Agent 的强大能力。

1.2- 核心问题:AI 幻觉

AI 模型在生成代码时可能会偏离事实或逻辑,产生所谓的 " 幻觉 "。这可能导致代码库混乱,引入难以发现的错误,是我们在使用 AI 辅助编程时必须解决的关键问题。

1.3- 解决方案:驯服 Cursor Agent

要有效利用 Cursor Agent 并减少幻觉,可以采取以下关键步骤:

1.3.1- 设定强硬的用户规则

严格的规则是规范 AI 行为的基础。

  • 操作路径: 打开 Cursor 设置 → 规则 → 用户规则 (Settings → Rules → User Rules)。
  • 目的: 粘贴预设的或自定义的强硬规则,为 AI 的交互和代码生成设定明确的界限和期望。

1.3.1.1- rules

Rules provide more context to AI models to help them follow your personal preferences and operate more efficiently in your codebase. Learn more about Rules


**User Rules**


These preferences get sent to the AI on all chats, composers and Command-K sessions.

1.  **`Use cursor_project_rules` as the Knowledge Base**: Always refer to `cursor_project_rules` to understand the context of the project. Do not code anything outside of the context provided in the `cursor_project_rules` folder. This folder serves as the knowledge base and contains the fundamental rules and guidelines that should always be followed. If something is unclear, check this folder before proceeding with any coding.
2.  **Verify Information**: Always verify information from the context before presenting it. Do not make assumptions or speculate without clear evidence.
3.  **Follow `implementation-plan.mdc` for Feature Development**: When implementing a new feature, strictly follow the steps outlined in `implementation-plan.mdc`. Every step is listed in sequence, and each must be completed in order. After completing each step, update `implementation-plan.mdc` with the word "Done" and a two-line summary of what steps were taken. This ensures a clear work log, helping maintain transparency and tracking progress.
4.  **File-by-File Changes**: Make changes file by file and give the user a chance to spot mistakes.
5.  **No Apologies**: Never use apologies.
6.  **No Understanding Feedback**: Avoid giving feedback about understanding in comments or documentation.
7.  **No Whitespace Suggestions**: Don't suggest whitespace changes.
8.  **No Summaries**: Do not provide unnecessary summaries of changes made. Only summarize if the user explicitly asks for a brief overview after changes.
9.  **No Inventions**: Don't invent changes other than what's explicitly requested.
10. **No Unnecessary Confirmations**: Don't ask for confirmation of information already provided in the context.
11. **Preserve Existing Code**: Don't remove unrelated code or functionalities. Pay attention to preserving existing structures.
12. **Single Chunk Edits**: Provide all edits in a single chunk instead of multiple-step instructions or explanations for the same file.
13. **No Implementation Checks**: Don't ask the user to verify implementations that are visible in the provided context. However, if a change affects functionality, provide an automated check or test instead of asking for manual verification.
14. **No Unnecessary Updates**: Don't suggest updates or changes to files when there are no actual modifications needed.
15. **Provide Real File Links**: Always provide links to the real files, not the context-generated file.
16. **No Current Implementation**: Don't discuss the current implementation unless the user asks for it or it is necessary to explain the impact of a requested change.
17. **Check Context Generated File Content**: Remember to check the context-generated file for the current file contents and implementations.
18. **Use Explicit Variable Names**: Prefer descriptive, explicit variable names over short, ambiguous ones to enhance code readability.
19. **Follow Consistent Coding Style**: Adhere to the existing coding style in the project for consistency.
20. **Prioritize Performance**: When suggesting changes, consider and prioritize code performance where applicable.
21. **Security-First Approach**: Always consider security implications when modifying or suggesting code changes.
22. **Test Coverage**: Suggest or include appropriate unit tests for new or modified code.
23. **Error Handling**: Implement robust error handling and logging where necessary.
24. **Modular Design**: Encourage modular design principles to improve code maintainability and reusability.
25. **Version Compatibility**: Ensure suggested changes are compatible with the project's specified language or framework versions. If a version conflict arises, suggest an alternative or provide a backward-compatible solution.
26. **Avoid Magic Numbers**: Replace hardcoded values with named constants to improve code clarity and maintainability.
27. **Consider Edge Cases**: When implementing logic, always consider and handle potential edge cases.
28. **Use Assertions**: Include assertions wherever possible to validate assumptions and catch potential errors early.

1.3.2- 利用项目规则作为知识库

Cursor 已经将旧的 cursor rules 文件升级为项目规则文件夹 (.cursor/rules)。这使得 AI 可以在每次请求时扫描该文件夹内的文档,将其作为上下文知识库。
image

  • 创建 .cursor/rules 文件夹: 在项目根目录下创建此文件夹。
  • 添加编码文档: 将项目相关的关键文档放入此文件夹。这些文档将成为 AI 理解项目背景、需求和约束的 " 知识库 "。建议包含以下文档(通常使用 .mdc 格式):
    • 项目需求文档 (PRD - project_requirements_document.mdc)
    • 应用流程文档 (app_flow_document.mdc)
    • 技术栈文档 (tech_stack_document.mdc)
    • 前端设计指南 (frontend_guidelines_document.mdc)
    • 后端结构文档 (backend_structure_document.mdc)
    • 应用流程图 (App Flowchart - 可由文档自动生成,帮助 AI 理解页面关系)
    • 项目特定规则 (cursor_project_rules.mdc - 替代旧的 cursorrules)
    • 实施计划 (implementation_plan.mdc)
    • 其他自定义文档 (Custom Document)
  • 作用: 通过提供这些结构化的信息,可以显著减少 AI 的猜测和幻觉,使其生成更符合项目实际情况的代码。

1.3.3- 制定详细的实施计划

为 Cursor Agent 提供一个清晰、分步的实施计划至关重要。

[!tip] codeguide
https://www.codeguide.dev/

  • 目的: 一个详细的计划(例如,包含 50 个步骤)能明确定义工作范围,指导 AI 按部就班地完成开发任务,避免偏离目标。
  • 实践: 将 implementation_plan.mdc 文件放入 .cursor/rules 文件夹。

image

image

1.3.4- 制定强大的调试策略

即使有上述措施,AI 有时仍可能陷入错误循环。这时需要有效的调试策略。

  • 识别问题: 当发现 Cursor Agent 反复出错时,应停止当前的交互。
  • 调试步骤:
    1. 重启交互: 关闭当前的聊天窗口,重新打开一个新的。
    2. 扫描代码库: 让 Agent 扫描整个代码库以获取最新状态。
    3. 再次运行: 尝试再次运行之前的任务。
    4. 提供错误信息: 如果仍然出错,将错误信息附上,并指导 AI:" 先找出核心问题,然后一步步计划解决问题。" (First find the root cause of the problem, then plan step by step to solve the problem.)
    5. 寻求外部帮助: 如果问题依旧,提示 AI:" 遵循代码最佳实践,搜索网络,找到这个问题的解决办法。" (Follow code best practices and search the web to find solutions for this problem.)
  • 调试技巧:
    • 使用合适的模型:
      • 使用 o1/o3-mini 等模型来识别核心问题。
      • 使用 Gemini Flash 2.0 等具有大上下文窗口(如 200 万 token)的模型来扫描整个代码库。
    • 专注相关文件: 在调试时,只附加上下文中最相关的文件,帮助 AI 集中处理关键信息。

1.3.5- 结合使用多个 AI 模型

不同的 AI 模型各有优劣。

  • 策略: 针对不同任务(如编码、调试、代码扫描)选用最合适的模型,可以提高效率和准确性。

1.4- 总结

Cursor Agent 是一个强大的工具,但需要被正确地 " 驯服 "。通过结合以下策略,可以显著提升其性能并大幅减少 AI 幻觉:

  1. 设定严格的用户规则:规范 AI 行为。
  2. 利用项目规则文件夹 (.cursor/rules):将编码文档作为 AI 的知识库。
  3. 制定详细的实施计划:明确工作范围和步骤。
  4. 采用强大的调试策略:有效解决 AI 可能出现的错误。
  5. 灵活使用多个 AI 模型:针对不同任务选择最优模型。

遵循这些指南,您将能更有效地利用 Cursor Agent,使其成为您开发流程中的得力助手。